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Abstract
An algorithm for the calculation of the resistance between two arbitrary nodes in
an arbitrary distance-regular resistor network is provided, where the calculation
is based on stratification introduced in Jafarizadeh and Salimi (2006 J. Phys.
A: Math. Gen. 39 1–29) and the Stieltjes transform of the spectral distribution
(Stieltjes function) associated with the network. It is shown that the resistances
between a node α and all nodes β belonging to the same stratum with respect
to the α (Rαβ(i) , β belonging to the ith stratum with respect to the α) are the
same. Also, the analytical formulae for two-point resistances Rαβ(i) , i = 1, 2, 3,
are given in terms of the size of the network and corresponding intersection
numbers. In particular, the two-point resistances in a strongly regular network
are given in terms of its parameters (v, κ, λ, µ). Moreover, the lower and upper
bounds for two-point resistances in strongly regular networks are discussed.

PACS numbers: 01.55.+b, 02.10.Yn

1. Introduction

A classic problem in electric circuit theory studied by numerous authors over many years is the
computation of the resistance between two nodes in a resistor network (see, e.g., [2]). Besides
being a central problem in electric circuit theory, the computation of resistances is also relevant
to a wide range of problems ranging from random walks (see [3]), the theory of harmonic
functions [4], to lattice Greens functions [5–9]. The connection with these problems originates
from the fact that electrical potentials on a grid are governed by the same difference equations
as those occurring in the other problems. For this reason, the resistance problem is often
studied from the point of view of solving the difference equations, which is most conveniently
carried out for infinite networks. In the case of Greens function approach, for example, past
efforts [2, 10] have been focused mainly on infinite lattices. Little attention has been paid to
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finite networks, even though the latter are those occurring in real life. In this paper, we take up
this problem and present a general formulation for computing two-point resistances in finite
networks. Particularly, we show that the known results for infinite networks are recovered by
taking the infinite-size limit.

The study of electric networks was formulated by Kirchhoff [11] more than 150 years ago
as an instance of a linear analysis. Our starting point is along the same line by considering
the Laplacian matrix associated with a network. The Laplacian is a matrix whose off-
diagonal entries are the conductances connecting pairs of nodes. Just as in graph theory where
everything about a graph is described by its adjacency matrix (whose element is 1 if two
vertices are connected and 0 otherwise), everything about an electric network is described
by its Laplacian. The author of [12] has derived an expression for the two-point resistance
between two arbitrary nodes α and β of a regular network in terms of the matrix entries
L−1

αα , L−1
ββ and L−1

αβ , where L−1 is the pseudo-inverse of the Laplacian matrix. Here in this
work, based on stratification introduced in [1] and spectral analysis method, we introduce a
procedure for calculating two-point resistances in distance-regular resistor networks in terms
of the Stieltjes function Gµ(x) associated with the adjacency matrix of the network and its
derivatives. Although we discuss the case of distance-regular networks, the method can also
be used for any arbitrary regular network. It should be noted that, in this way, the two-point
resistances are calculated straightforwardly without any need to know the spectrum of the
network. Also, it is shown that the resistances between a node α and all nodes β belonging to
the same stratum with respect to the α (Rαβ(i) , β belonging to the ith stratum with respect to the
α) are the same. We give the analytical formulae for two-point resistances Rαβ(i) , i = 1, 2, 3, in
terms of the network’s characteristics such as the size of the network and its intersection array.
In particular, the two-point resistances in a strongly regular network are given in terms of the
network’s parameters (v, κ, λ, µ). Moreover, we discuss the lower and upper bounds for two-
point resistances in strongly regular networks. From the fact that, the two-point resistances on
a network depend on the corresponding Stieltjes function Gµ(x) and that Gµ(x) is written as a
continued fraction, the two-point resistances on an infinite-size network can be approximated
with those of the corresponding finite-size networks.

The organization of the paper is as follows. In section 2, we give some preliminaries such
as association schemes, distance-regular networks, stratification of these networks and Stieltjes
function associated with the network. In section 3, two-point resistances in distance-regular
networks are given in terms of the Stieltjes function and its derivatives. Also, the resistances
Rαβ(i) , i = 1, 2, 3, are given in terms of the network’s intersection array. In particular, two-point
resistances in a strongly regular network are given in terms of the network’s parameters; also
lower and upper bounds for the two-point resistances in these networks are discussed. Section 4
is devoted to calculating two-point resistances Rαβ(i) , i = 1, 2, 3, in some important examples
of distance-regular networks, such as complete network, strongly regular networks (distance-
regular networks with diameter 2), e.g. Petersen and normal subgroup scheme networks [1],
d-cube (d dimensional hypercube) and Johnson networks. The paper is ended with a brief
conclusion and an appendix containing a table for two-point resistances Rαβ(i) , i = 1, 2, 3, of
some important distance-regular resistor networks with the size less than 70.

2. Preliminaries

In this section, we give some preliminaries such as definitions related to association schemes,
corresponding stratification, distance-regular networks and Stieltjes function associated with
a distance-regular network.
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Figure 1. Shows a resistor network with two kinds of conductances corresponding to two kinds
of relations R1 and R2.

2.1. Association schemes

First we recall the definition of association schemes. The reader is referred to [14] for further
information on association schemes.

Definition 2.1 (symmetric association schemes). Let V be a set of vertices, and let
Ri (i = 0, 1, . . . , d) be nonempty relations on V (i.e., subset of V × V ). Let the following
conditions (1), (2), (3) and (4) be satisfied. Then, the relations {Ri}0�i�d on V × V satisfying
the following conditions,

(1) {Ri}0�i�d is a partition of V × V

(2) R0 = {(α, α) : α ∈ V }
(3) Ri = Rt

i for 0 � i � d, where Rt
i = {(β, α) : (α, β) ∈ Ri}

(4) For (α, β) ∈ Rk , the number pk
ij = |{γ ∈ V : (α, γ ) ∈ Ri and (γ, β) ∈ Rj }| does not

depend on (α, β) but only on i, j and k,

define a symmetric association scheme of class d on V which is denoted by Y = (V , {Ri}0�i�d).
Furthermore, if we have pk

ij = pk
ji for all i, j, k = 0, 2, . . . , d , then Y is called commutative.

The number v of the vertices, |V |, is called the order of the association scheme and Ri

is called ith relation. For example, in the resistor networks the relations Ri, i = 0, 1, . . . , d ,
can be interpreted as d + 1 different kinds of conductances, i.e., two nodes α, β have the ith
relation with each other if and only if the conductance between them be ci (see figure 1). In
this paper, we will deal with the special case where the conductance between two nodes α, β

is c ≡ c1 if the nodes be adjacent, i.e., (α, β) ∈ R1 and the other conductances corresponding
to the other relations will be taken to zero.

Also note that, the intersection number pk
ij can be interpreted as the number of vertices

which have relation i and j with vertices α and β, respectively, provided that (α, β) ∈ Rk , and
it is the same for all elements of relation Rk . For all integers i (0 � i � d), set κi = p0

ii and
note that κi �= 0, since Ri is non-empty. We refer to κi as the ith valency of Y.

For examples of association schemes, consider a cube known as Hamming scheme
H(3, 2), in which V (the vertex set) is the set of 3-tuples with entries in F2 = {0, 1}.
Two vertices are connected if and only if they differ by exactly one entry (see figure 2). The
distance between vertices, i.e. the length of the shortest edge path connecting them, will then
indicate which relation they are contained in. For example, if x = (0, 0, 1), y = (0, 1, 1) and
z = (1, 0, 1), then (x, y) ∈ R1, (x, z) ∈ R1 and (y, z) ∈ R2. As an another example, consider
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Figure 2. (a) Shows the cube or Hamming scheme H(3, 2) with a vertex set V = {(ijk) :
i, j, k = 0, 1} and relations R0 = {((ijk), (ijk)) : (ijk) ∈ V }, R1 = {((ijk), (i′jk)), ((ijk),

(ij ′k)), ((ijk), (ijk′)) : i �= i′, j �= j ′, k �= k′}, R2 = {((ijk), (i′j ′k)), ((ijk), (i′jk′)), ((ijk),

(ij ′k′)) : i �= i′, j �= j ′, k �= k′} and R3 = {((ijk), (i′j ′k′)) : i �= i′, j �= j ′, k �= k′} respectively.
Its non-vanishing intersection numbers are p0

11 = 3, p2
11 = 2, p1

12 = p1
21 = 2, p3

12 = p3
21 = 3,

p2
13 = p2

31 = 1, p0
22 = 3, p0

22 = 3, p1
23 = p1

32 = 1, p0
33 = 1. (b) The vertical dashed lines denote

the four strata of the cube.

Figure 3. Shows the octahedron or Johnson scheme J (4, 2).

the octahedron (a special case of a square dipyramid with equal edge lengths) which is the
same as the Johnson scheme J (4, 2) in which the vertex set V contains all two-element subsets
of the set {1, 2, 3, 4} and two vertices are adjacent if and only if they intersect in exactly one
element. Two vertices are then at distance i, i = 0, 1, 2, if and only if they have exactly 2 − i

elements in common (see figure 3).
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Figure 4. Denotes the cycle resistor network C2m, where the m + 1 vertical dashed lines show the
m + 1 strata of the network.

Let Y = (X, {Ri}0�i�d) be a commutative symmetric association scheme of class d, then
the matrices A0, A1, . . . , Ad defined by

(Ai)α,β =
{

1 if (α, β) ∈ Ri

0 otherwise
(2.1)

are adjacency matrices of Y such that

AiAj =
d∑

k=0

pk
ijAk. (2.2)

From (2.2), it is seen that the adjacency matrices A0, A1, . . . , Ad form a basis for a commutative
algebra A known as the Bose–Mesner algebra of Y. For example, consider the cycle graph with
v vertices denoted by Cv (see figure 4 for even v = 2m). From figure 4, it can be easily seen
that, for even number of vertices v = 2m, the adjacency matrices are given by

Ai = Si + S−i , i = 1, 2, . . . , m − 1, Am = Sm, (2.3)

where S is the v × v circulant matrix with period v (Sv = Iv) defined as follows:

S =




0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0
0 0 . . . 0 1
1 0 . . . 0 0


 . (2.4)

For odd number of vertices v = 2m + 1, we have

Ai = Si + S−i , i = 1, 2, . . . , m − 1,m. (2.5)

One can easily check that the adjacency matrices in (2.3) together with A0 = I2m (and also
the adjacency matrices in (2.5) together with A0 = I2m+1) form a commutative algebra.

Finally, the underlying graph of an association scheme � = (V ,R1) is an undirected
connected graph, where the sets V and R1 consist of their vertices and edges, respectively.
Obviously replacing R1 with one of the other relations Ri, i �= 0, 1, will also give us an
underlying graph � = (V ,Ri) (not necessarily a connected graph) with the same set of
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Figure 5. Shows edges through α and β in a distance-regular graph.

vertices but a new set of edges Ri . For example, the cube is the underlying graph of the
Hamming scheme H(3, 2) with the adjacency matrices (other than A0 = I ⊗ I ⊗ I ) as
follows:

A1 = σx ⊗ I ⊗ I + I ⊗ σx ⊗ I + I ⊗ I ⊗ σx,

A2 = σx ⊗ σx ⊗ I + I ⊗ σx ⊗ σx + σx ⊗ I ⊗ σx,

A3 = σx ⊗ σx ⊗ σx,

(2.6)

where I is the 2 × 2 unit matrix and σx is the Pauli matrix.

2.2. Stratifications

For a given vertex α ∈ V , let Ri(α) := {β ∈ V : (α, β) ∈ Ri} denote the set of all vertices
having the relation Ri with α. Then, the vertex set V can be written as a disjoint union of
Ri(α) for i = 0, 1, 2, . . . , d, i.e.,

V =
d⋃

i=0

Ri(α). (2.7)

We fix a point o ∈ V as an origin of the underlying graph of an association scheme, called the
reference vertex. Then, relation (2.7) stratifies the underlying graph into a disjoint union of
associate classes Ri(o) (called the ith stratum with respect to o). Let l2(V ) denote the Hilbert
space of C-valued square-summable functions on V . With each associate class Ri(o), we
associate a unit vector in l2(V ) defined by

|φi〉 = 1√
κi

∑
α∈Ri(o)

|α〉, (2.8)

where |α〉 denotes the eigenket of the αth vertex at the associate class Ri(o) and κi = |Ri(o)|
is called the ith valency of the graph

(
κi := p0

ii = |{γ : (o, γ ) ∈ Ri}| = |Ri(o)|). The closed
subspace of l2(V ) spanned by {|φi〉} is denoted by 	(G). Since {|φi〉} becomes a complete
orthonormal basis of 	(G), we often write

	(G) =
∑

i

⊕C|φi〉. (2.9)

Let Ai be the adjacency matrix of the graph � = (V ,R). Then, from the definition of the ith
adjacency matrix Ai , for the reference state |φ0〉 (|φ0〉 = |o〉, with o ∈ V as reference vertex),
we have

Ai |φ0〉 =
∑

β∈Ri(o)

|β〉. (2.10)
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Then by using (2.8) and (2.10), we have

Ai |φ0〉 = √
κi |φi〉. (2.11)

For the sake of clarity, consider the cube and the cycle graph C2m with the adjacency
matrices as in (2.6) and (2.3), respectively. Then, by using (2.11) and choosing |000〉 as the
origin (reference vertex), the cube is stratified to four strata (see figure 2) such that the unit
vectors are given by

|φ0〉 = |000〉, |φ1〉 = 1√
3
(|001〉 + |010〉 + |100〉),

|φ2〉 = 1√
3
(|011〉 + |110〉 + |101〉), |φ3〉 = |111〉, (2.12)

where by choosing |0〉 as the origin, the cycle graph C2m is stratified to m + 1 strata (see
figure 4) such that the unit vectors are given by

|φ0〉 = |0〉, |φi〉 = 1√
2
(|i〉 + |2m − i〉), i = 1, 2, . . . , m − 1, |φm〉 = |m〉.

(2.13)

2.3. Distance-regular graphs

In this section, we consider some set of important graphs called distance-regular graphs. First,
we recall the definition of so-called P-polynomial association schemes (which are closely
related to the distance-regular graphs) as follows.

Definition 2.2 (P-polynomial property). The symmetric association scheme Y =
(X, {Ri}0�i�d) is said to be P-polynomial (with respect to the ordering R0, . . . , Rd of the
associate classes) whenever for all i = 0, 1, . . . , d, there exist di, ei, fi; di �= 0 �= fi with

A1Ai = diAi−1 + eiAi + fiAi+1. (2.14)

Condition (2.14) is similar to the well-known three-term recursion relations appearing
in the theory of orthogonal polynomials, where A1 is in correspondence with x (see
equation (2.36) in subsection 2.4). Using the recursion relations (2.14), one can show that Ai

is a polynomial in A1 of degree i, i.e., we have Ai = Pi(A1), i = 1, 2, . . . , d . In particular,
A ≡ A1 multiplicatively generates the Bose–Mesner algebra (for more details see [15]).

An undirected connected graph � = (V ,R1) is called the distance-regular graph if it is
the underlying graph of a P-polynomial association scheme, where the relations are based
on a distance function defined as follows. Let the distance between α, β ∈ V denoted by
∂(α, β) is the length of the shortest walk connecting α and β (recall that a finite sequence
α0, α1, . . . , αn ∈ V is called a walk of length n if αk−1 ∼ αk for all k = 1, 2, . . . , n, where
αk−1 ∼ αk means that αk−1 is adjacent with αk) then the relations Ri in distance-regular
graphs are defined as (α, β) ∈ Ri if and only if ∂(α, β) = i, i = 0, 1, . . . , d, where d :=
max{∂(α, β) : α, β ∈ V } is called the diameter of the graph. Since ∂(α, β) gives the distance
between vertices α and β, ∂ is called the distance function. Clearly, we have ∂(α, α) = 0 for
all α ∈ V and ∂(α, β) = 1 if and only if α ∼ β. Therefore, distance-regular graphs become
metric spaces with the distance function ∂ .

One should note that, condition (2.14) implies that for distance-regular graphs, we have
the following relation:

R1(β) ⊆ Ri−1(α) ∪ Ri(α) ∪ Ri+1(α), ∀β ∈ Ri(α). (2.15)

We also note that, in distance-regular graphs, the stratification is reference vertex independent,
namely one can choose every vertex as a reference one, while the stratification of more general
graphs may be reference dependent.
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Relation (2.14) implies that in a distance-regular graph, pi
j1 = 0 (for i �= 0, j dose not

belong to {i − 1, i, i + 1}), i.e., the nonzero intersection numbers of the graph are given by

ai = pi
i1, bi = pi

i+1,1, ci = pi
i−1,1, (2.16)

respectively (see figure 5). The intersection numbers (2.16) and the valencies κi satisfy the
following obvious conditions:

ai + bi + ci = κ, κi−1bi−1 = κici, i = 1, . . . , d,

κ0 = c1 = 1, b0 = κ1 = κ, (c0 = bd = 0).
(2.17)

Thus all parameters of the graph can be obtained from the intersection array
{b0, . . . , bd−1; c1, . . . , cd}.

By using equations (2.2) and (2.17), for adjacency matrices of the distance-regular graph
�, we obtain

A1Ai = bi−1Ai−1 + (κ − bi − ci)Ai + ci+1Ai+1, i = 1, 2, . . . , d − 1,

A1Ad = bd−1Ad−1 + (κ − cd)Ad.
(2.18)

The recursion relations (2.18) imply that

Ai = Pi(A), i = 0, 1, . . . , d. (2.19)

By acting two sides of (2.18) on |φ0〉 and using (2.11), we obtain
√

κiA|φi〉 = √
κi−1bi−1|φi−1〉 +

√
κiαi |φi〉 +

√
κi+1ci+1|φi+1〉, i = 0, 1, . . . , d. (2.20)

Then, by dividing the sides of (2.20) by
√

κi and using (2.17), one can easily obtain the
following three-term recursion relations for the unit vectors |φi〉, i = 0, 1, . . . , d:

A|φi〉 = βi+1|φi+1〉 + αi |φi〉 + βi |φi−1〉, (2.21)

where, the coefficients αi and βi are defined as

α0 = 0, αk = κ − bk − ck, ωk ≡ β2
k = bk−1ck, k = 1, . . . , d. (2.22)

That is, in the basis of the unit vectors {|φi〉, i = 0, 1, . . . , d}, the adjacency matrix A is
projected to the following symmetric tridiagonal form:

A =




α0 β1 0 . . . . . . 0
β1 α1 β2 0 . . . 0

0 β2 α3 β3
. . .

...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 βd−1 αd−1 βd

0 . . . 0 0 βd αd




. (2.23)

In [26], it has been shown that the coefficients αi and βi can also be obtained easily by using
the Lanczos iteration algorithm. We will refer to the parameters αi and ωi defined in (2.22) as
QD (quantum decomposition) parameters.

A well-known example of distance-regular graphs is the cycle graph Cv . By using (2.3)
and (2.5), one can obtain the following recursion relations for C2m and C2m+1:

A1Ai = Ai−1 + Ai+1, i = 0, 1, . . . , m − 1; A1Am = Am−1 (2.24)

and

A1Ai = Ai−1 + Ai+1, i = 0, 1, . . . , m − 1; A1Am = Am−1 + Am, (2.25)
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respectively (the graph Cv for v = 2m or v = 2m + 1 consists of m + 1 strata). By
comparing (2.24) and (2.25) with the three-term recursion relations (2.18), we obtain the
intersection arrays for even and odd number of vertices as

{b0, . . . , bm−1; c1, . . . , cm} = {2, 1, . . . , 1, 1; 1, . . . , 1, 2} (2.26)

and

{b0, . . . , bm−1; c1, . . . , cm} = {2, 1, . . . , 1; 1, . . . , 1, 1}, (2.27)

respectively. Then, by using (2.22), for even v = 2m the QD parameters are given by

αi = 0, i = 0, 1, . . . , m; ω1 = ωm = 2, ωi = 1, i = 2, . . . , m − 1,

(2.28)

where, for odd v = 2m + 1, we obtain

αi = 0, i = 0, 1, . . . , m − 1, αm = 1; ω1 = 2, ωi = 1, i = 2, . . . , m.

(2.29)

2.4. Stieltjes function associated with the network

In this subsection, we recall the definition of the Stieltjes function associated with a distance-
regular network which is related to the spectral distribution corresponding to the network. To
do so, first we recall some facts about the spectral distribution associated with the adjacency
matrix of the network. In fact, the spectral analysis of operators is an important issue in
quantum mechanics, operator theory and mathematical physics [16, 17]. Since the advent of
random matrix theory (RMT), there has been considerable interest in the statistical analysis
of spectra [18–20]. RMT can be viewed as a generalization of the classical probability
calculus, where the concept of probability density distribution for a one-dimensional random
variable is generalized onto an averaged spectral distribution of the ensemble of large, non-
commuting random matrices. Such a structure exhibits several phenomena known in classical
probability theory, including central limit theorems [21]. Also, the two-point resistance has a
probabilistic interpretation based on classical random walker walking on the network. Indeed,
the connection between random walks and electric networks has been recognized for some
time (see e.g. [22–24]), where one can establish a connection between the electrical concepts
of current and voltage and corresponding descriptive quantities of random walks regarded
as finite state Markov chains (for more details see [3]). Also, by adapting the random-walk
dynamics and mean-field theory it has been studied that [25], how the growth of a conducting
network, such as electrical or electronic circuits, interferes with the current flow through the
underlying evolving graphs. In this paper, it is shown that there is also a connection between
the mathematical techniques introduced in previous subsections and this subsection such as
Hilbert space of the stratification and spectral techniques (which have been employed in
[1, 26] for investigating continuous time quantum walk on graphs), and electrical concept of
resistance between two arbitrary nodes of regular networks and so the same techniques can be
used for calculating the resistance. Note that, although we take the spectral approach to define
the Stieltjes function in terms of orthogonal polynomials (which are orthogonal with respect
to the spectral distribution µ associated with the network) with three-term recursion relations,
in practice as will be seen in section 3, we will calculate two-point resistances without any
need to evaluate the spectral distribution µ.

It is well known that, for any pair (A, |φ0〉) of a matrix A and a vector |φ0〉, it can be
assigned a measure µ as follows:

µ(x) = 〈φ0|E(x)|φ0〉, (2.30)
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where E(x) = ∑
i |ui〉〈ui | is the operator of projection onto the eigenspace of A corresponding

to eigenvalue x, i.e.,

A =
∫

xE(x) dx. (2.31)

It is easy to see that, for any polynomial P(A) we have

P(A) =
∫

P(x)E(x) dx, (2.32)

where for discrete spectrum the above integrals are replaced by summation. Therefore, using
relations (2.30) and (2.32), the expectation value of powers of adjacency matrix A over starting
site |φ0〉 can be written as

〈φ0|Am|φ0〉 =
∫

R

xmµ(dx), m = 0, 1, 2, . . . . (2.33)

The existence of a spectral distribution satisfying (2.33) is a consequence of Hamburgers
theorem, see e.g., [27, theorem 1.2].

Obviously relation (2.33) implies an isomorphism from the Hilbert space of the
stratification onto the closed linear span of the orthogonal polynomials with respect to the
measure µ. More clearly, the orthonormality of the unit vectors |φi〉 implies that

δij = 〈φi |φj 〉 = 1√
κiκj

〈φ0|AiAj |φ0〉 =
∫

R

P ′
i (x)P ′

j (x)µ(dx), (2.34)

where we have used equations (2.11) and (2.19) to write

|φi〉 = 1√
κi

Ai |φ0〉 = 1√
κi

Pi(A)|φ0〉 ≡ P ′
i (A)|φ0〉, (2.35)

with P ′
i (A) := 1√

κi
Pi(A). Now, by substituting (2.35) in (2.21), we get three-term recursion

relations between polynomials P ′
j (A), which lead to the following three term recursion

relations between polynomials P ′
j (x):

xP ′
k(x) = βk+1P

′
k+1(x) + αkP

′
k(x) + βkP

′
k−1(x) (2.36)

for k = 0, . . . , d − 1, with P ′
0(x) = 1. Multiplying two sides of (2.36) by β1 . . . βk we obtain

β1 . . . βkxP ′
k(x) = β1 . . . βk+1P

′
k+1(x) + αkβ1 . . . βkP

′
k(x) + β2

k .β1 . . . βk−1P
′
k−1(x). (2.37)

By rescaling P ′
k as Qk = β1 . . . βkP

′
k , the spectral distribution µ under question is characterized

by the property of orthonormal polynomials {Qk} defined recurrently by

Q0(x) = 1, Q1(x) = x,

xQk(x) = Qk+1(x) + αkQk(x) + β2
k Qk−1(x), k � 1.

(2.38)

If such a spectral distribution is unique, the spectral distribution µ is determined by the
identity

Gµ(x) =
∫

R

µ(dy)

x − y
= 1

x − α0 − β2
1

x−α1− β2
2

x−α2− β2
3

x−α3−···

= Q
(1)
d−1(x)

Qd(x)
=

d−1∑
l=0

Al

x − xl

, (2.39)

where xl are the roots of polynomial Qd(x). Gµ(x) is called the Stieltjes/Hilbert transform of
spectral distribution µ or the Stieltjes function and polynomials

{
Q

(1)
k

}
are defined recurrently

as

Q
(1)
0 (x) = 1, Q

(1)
1 (x) = x − α1,

xQ
(1)
k (x) = Q

(1)
k+1(x) + αk+1Q

(1)
k (x) + β2

k+1Q
(1)
k−1(x), k � 1,

(2.40)
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respectively. The coefficients Al appearing in (2.39) are calculated as

Al = lim
x→xl

(x − xl)Gµ(x) (2.41)

(for more details see [27–30]).
Note that the third equality in (2.39) is a well-known result in the theory of continued

fractions (see for example [13]). Historically, the orthogonal polynomials originated in the
theory of continued fractions. This relationship is of great importance and is one of the
possible starting points of the treatment of orthogonal polynomials.

3. Two-point resistances in regular resistor networks

A classic problem in electric circuit theory studied by numerous authors over many years is
the computation of the resistance between two nodes in a resistor network (see, e.g., [2]). The
results obtained in this section show that there is a close connection between the techniques
introduced in section 2 such as Hilbert space of the stratification and the Stieltjes function and
electrical concept of resistance between two arbitrary nodes of regular networks, and these
techniques can be employed for calculating two-point resistances.

For a given regular graph � with v vertices and adjacency matrix A, let rij = rji be the
resistance of the resistor connecting vertices i and j . Hence, the conductance is cij = r−1

ij = cji

so that cij = 0 if there is no resistor connecting i and j . Denote the electric potential at the ith
vertex by Vi and the net current flowing into the network at the ith vertex by Ii (which is zero
if the ith vertex is not connected to the external world). Since there exist no sinks or sources
of current including the external world, we have the constraint

∑v
i=1 Ii = 0. The Kirchhoff

law states
v∑

j=1,j �=i

cij (Vi − Vj ) = Ii, i = 1, 2, . . . , v. (3.1)

Explicitly, equation (3.1) reads

L �V = �I , (3.2)

where �V and �I are v-vectors whose components are Vi and Ii , respectively, and

L =
∑

i

ci |i〉〈i| −
∑
i,j

cij |i〉〈j | (3.3)

is the Laplacian of the graph � with

ci ≡
v∑

j=1,j �=i

cij , (3.4)

for each vertex α. Hereafter, we will assume that all nonzero resistances are equal to r, then
the off-diagonal elements of −L are precisely those of 1

r
A, i.e.,

L = 1

r
(κI − A), (3.5)

with κ = deg(α), for each vertex α. It should be noted that L has the eigenvector (1, 1, . . . , 1)t

with the eigenvalue 0. Therefore, L is not invertible and so we define the pseudo-inverse of L
as

L−1 =
∑

i,λi �=0

λ−1
i Ei, (3.6)
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where Ei is the operator of projection onto the eigenspace of L−1 corresponding to the
eigenvalue λi . Following the result of [12] and that L−1 is a real matrix, the resistance
between vertices α and β is given by

Rαβ = 〈α|L−1|α〉 − 2〈α|L−1|β〉 + 〈β|L−1|β〉. (3.7)

In this paper, we will consider distance-regular graphs as resistor networks. Then, the
diagonal entries of L−1 are independent of the vertex, i.e., L−1

αα = L−1
ββ for all α, β ∈ V .

Therefore, from relation (3.7), we can obtain the two-point resistance between two arbitrary
nodes α and β as follows:

Rαβ = 2
(
L−1

αα − L−1
αβ

)
. (3.8)

Therefore, for evaluating two-point resistance Rαβ , we need to calculate the matrix entries
L−1

αα and L−1
αβ . To this end, as equation (3.6) shows, one needs to know the spectrum of

the pseudo-inverse L−1 which is a task with high complexity for networks with a large size,
even with computer. In the following, we give a method such that the two-point resistances
are calculated without any knowledge about the spectrum of the pseudo-inverse of Laplacian
of the network. In this method, we need only the Stieltjes function of the network which
is calculated easily via (2.39) by using the QD parameters of the network and recursion
relations (2.38) and (2.40). In fact, by using this method, we give explicit analytical formulae
for two-point resistances Rαβ(i) , i = 1, 2, 3; (Rαβ(k) denotes the two-point resistance between
α as reference node and each β ∈ Rk(α)) on any distance-regular network in terms only of
the intersection array of the network without any need to evaluate the spectrum of L−1.

Let α and β be two arbitrary nodes of the network such that β belongs to the lth stratum
with respect to α, i.e., β ∈ Rl(α) (we choose one of the nodes, here α, as reference node).
Then, for calculating the matrix entries L−1

αα and L−1
βα in (3.7), we use the Stieltjes function to

obtain

L−1
αα = r〈α| 1

κI − A
|α〉 = r

∫
R−{κ}

dµ(x)

κ − x
= r

d−1∑
i,i �=0

Ai

κ − xi

= r lim
y→κ

(
Gµ(y) − A0

y − κ

)

(3.9)

and

L−1
βα = r〈β| 1

κI − A
|α〉 = r√

κl

〈φl| 1

κI − A
|α〉 = r√

κl

〈α| P ′
l (A)

κI − A
|α〉

= r√
κl

∫
R−{κ}

dµ(x)

κ − x
P ′

l (x) = r√
κl

∑
i,i �=0

AiP
′
l (xi)

κ − xi

, (3.10)

where we have considered x0 = κ (κ is the eigenvalue corresponding to the idempotent E0).
Then, by using (3.8), the two-point resistance Rαβ(l) in the network is given by

Rαβ(l) = 2r√
κl


√

κl lim
y→κ

(
Gµ(y) − A0

y − κ

)
−

∑
i,i �=0

AiP
′
l (xi)

κ − xi


 . (3.11)

For evaluating the term
∑

i,i �=0
AiP

′
l (xi )

κ−xi
in (3.11), we need to calculate

Im :=
∑
i,i �=0

Aix
m
i

κ − xi

, for m = 0, 1, . . . , l. (3.12)



Two-point resistance 4961

To do so, we write the term (3.12) as

Im =
∑
i,i �=0

Aix
m
i

κ − xi

=
∑
i,i �=0

Ai

(
(xi − κ)m − ∑m

l=1(−1)lCm
l κlxm−l

i

)
κ − xi

= −
∑
i,i �=0

Ai(xi − κ)m−1 −
m∑

l=1

(−1)lCm
l κl

∑
i,i �=0

Aix
m−l
i

κ − xi

, (3.13)

that is, we have

Im = −
m−1∑
l=0

(−1)lCm−1
l κ l

∑
i,i �=0

Aix
m−l−1
i −

m∑
l=1

(−1)lCm
l κlIm−l . (3.14)

Therefore, Im can be calculated recursively, if we are able to calculate the term
∑

i,i �=0 Aix
m−l−1
i

for l = 0, 1, . . . , m − 1 appearing in (3.13). For example, for m = 1, we obtain

I1 =
∑
i,i �=0

Aixi

κ − xi

= −
∑
i,i �=0

Ai + κI0 = −1 + A0 + κ
∑
i,i �=0

Ai

κ − xi

. (3.15)

In order to evaluate the sum
∑

i,i �=0 Aix
k
i , we rescale the roots xi as ξxi , where ξ is some

nonzero constant. Then, we will have

1

ξ
Gµ(x/ξ) =

∑
i

Ai

x − ξxi

+
A0

x − ξx0
. (3.16)

Now, we take the mth derivative of (3.16) to obtain

∂m

∂ξm

(
1

ξ
Gµ(x/ξ)

)
= m!


∑

i,i �=0

Aix
m
i

(x − ξxi)m+1
+

A0x
m
0

(x − ξx0)m+1


 , (3.17)

where at the limit of the large x, one can obtain the following simple form:

lim
x→∞

∂m

∂ξm

(
1

ξ
Gµ(x/ξ)

)
= m!

(∑
i,i �=0 Aix

m
i + A0x

m
0

xm+1

)
. (3.18)

Therefore, we obtain∑
i,i �=0

Aix
m
i = 1

m!
lim

x→∞

[
xm+1 ∂m

∂ξm

(
1

ξ
Gµ(x/ξ)

)]
− A0x

m
0 . (3.19)

3.1. Two-point resistances up to the third stratum

In this subsection, we give analytical formulae for two-point resistances Rαβ(i) , i = 1, 2, 3, in
terms of the intersection numbers of the resistor networks.

It should be noted that, for two arbitrary nodes α and β such that β ∈ R1(α), we have
P ′

1(x) = x√
κ

. Therefore, by using (3.10) and (3.15), we obtain

L−1
βα = r

κ

∑
i,i �=0

Aixi

κ − xi

= −r

κ

∑
i,i �=0

Ai + r
∑
i,i �=0

Ai

κ − xi

. (3.20)

Therefore, by using (3.8), we obtain the following simple result for all β ∈ R1(α):

Rαβ(1) = 2r

κ

∑
i,i �=0

Ai = 2r

κ
(1 − A0) = 2r

κ

(
1 − 1

v

)
, (3.21)
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where v is the number of vertices of the graph, and in the last equality we have used the fact
that for regular graphs, we have

A0 = 1

v
. (3.22)

In the following, we give analytical formulae for calculating two-point resistances Rαβ(2) and
Rαβ(3) , where Rαβ(2) (Rαβ(3) ) denotes the mutual resistances between α and all β ∈ R2(α) (all
β ∈ R3(α)).

By using (2.38) and that P ′
k = Qk√

ω1...ωk
, we have P ′

2(x) = 1√
ω1ω2

(x2 − α1x − ω1). Then,
from (3.10) after some simplifications we obtain for β ∈ R2(α):

L−1
αβ(2) = r√

ω1ω2κ2


−

∑
i,i �=0

Aixi + (α1 − κ)
∑
i,i �=0

Ai + κ(κ − α1 − 1)
∑
i,i �=0

Ai

κ − xi


 . (3.23)

By substituting α1 = κ − b1 − c1 in κ(κ − α1 − 1), we obtain

κ(κ − α1 − 1) = κ(b1 + c1 − 1) = κb1. (3.24)

Then, the coefficient of the term
∑

i,i �=0
Ai

κ−xi
in (3.23) is

rκb1√
ω1ω2κ2

= rκb1√
κb1c2κ2

= r

√
κb1

c2κ2
= r. (3.25)

Therefore, (3.23) can be written as

L−1
αβ(2) = r√

ω1ω2κ2


−

∑
i,i �=0

Aixi + (α1 − κ)
∑
i,i �=0

Ai


 + r

∑
i,i �=0

Ai

κ − xi

, (3.26)

where the sum
∑

i,i �=0 Aixi can be calculated by using (3.19). It can be easily shown that

lim
x→∞

[
x2 ∂

∂ξ

(
1

ξ
Gµ(x/ξ)

)]
= ad−2 − bd−1, (3.27)

where ad−2 and bd−1 are the coefficients of xd−2 and xd−1 in Q
(1)
d−1 and Qd , respectively. From

the recursion relations (2.38) and (2.40), one can see that ad−2 = bd−1 = −(α1 + · · · + αd).
Therefore, from (3.19) and (3.27), we obtain∑

i,i �=0

Aixi = −A0κ = −κ

v
. (3.28)

Then, by using (3.7) and (3.26), one can write Rαβ(2) as follows:

Rαβ(2) = 2r√
ω1ω2κ2

{
(κ − α1) − 2κ − α1

v

}
, (3.29)

where by using (2.17) and (2.22), we obtain the following main result in terms of the
intersection numbers of the graph:

Rαβ(2) = 2r

b0b1

{
b1 + 1 − b0 + b1 + 1

v

}
. (3.30)

Now, consider β ∈ R3(α). Then, by using (2.38) and P ′
k = Qk

β1,...,βk
, we obtain

P ′
3(x) = 1√

ω1ω2ω3
(x3 − (α1 + α2)x

2 − (ω1 + ω2 − α1α2)x + α2ω1). As above, after some
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calculations, we obtain for β ∈ R3(α):

L−1
αβ(3) = r√

ω1ω2ω3κ3

{
κ2

v
− (

ad−3 − bd−2 + b2
d−1 − bd−1ad−2

) − (α1 + α2 − κ)
κ

v

− (κ2 − κ(α1 + α2) − ω1 − ω2 + α1α2)

(
v − 1

v

)

+ (κ3 − κ2(α1 + α2) − κ(ω1 + ω2 − α1α2) + α2ω1)
∑
i,i �=0

Ai

κ − xi

}
. (3.31)

Again, by substituting α1, α2, ω1 and ω2 from (2.22), we have

1√
ω1ω2ω3κ3

(κ3 − κ2(α1 + α2) − κ(ω1 + ω2 − α1α2) + α2ω1) = κb1b2√
κb1c2b2c3κ3

= 1. (3.32)

Therefore, (3.31) can be written as follows:

L−1
αβ(3) = r√

ω1ω2ω3κ3

{
κ2

v
− (

ad−3 − bd−2 + b2
d−1 − bd−1ad−2

) − (α1 + α2 − κ)
κ

v

− (κ2 − κ(α1 + α2) − ω1 − ω2 + α1α2)

(
v − 1

v

)}
+ r

∑
i,i �=0

Ai

κ − xi

. (3.33)

In (3.31), we have used the following equality:

lim
x2→∞

[
x3 ∂2

∂ξ 2

(
1

ξ
Gµ(x/ξ)

)]
= 2

(
ad−3 − bd−2 + b2

d−1 − bd−1ad−2
)
, (3.34)

where ad−3 and bd−2 are the coefficients of xd−3 and xd−2 in Q
(1)
d−1 and Qd , respectively. From

the recursion relations (2.38) and (2.40), one can see that ad−3 = ∏d
i<j=1 αiαj − (ω1 + · · · +

ωd−1) and bd−2 = ad−3 − ωd . Therefore, we have ad−3 − bd−2 + b2
d−1 − bd−1ad−2 = ωd .

Then, by using (3.7), Rαβ(3) is given by

Rαβ(3) = 2r√
ω1ω2ω3κ3

{
ωd + (α1 + α2 − 2κ)

κ

v
+ (κ2 − κ(α1 + α2)

−ω1 − ω2 + α1α2)

(
v − 1

v

)}
. (3.35)

In terms of the intersection numbers of the graph, we obtain the following main result:

Rαβ(3) = 2r

b0b1b2

{
bd−1cd + b2 − b0 + c2 + b1b2 − (b0 + 1)(b2 + c2) + b1(b0 + b2)

v

}
. (3.36)

4. Examples

In this section, we calculate two-point resistances Rαβ(i) , i = 1, 2, 3, by using (3.21), (3.30)
and (3.36), in some important distance-regular networks with diameters d = 1, d = 2 and
d > 2, respectively.

4.1. Complete network Kv

The complete network Kv is the simplest example of distance-regular networks. This network
has v vertices with v(v − 1)/2 edges; the degree of each vertex is κ = v − 1 also the network
has diameter d = 1. The intersection array of the network is {b0; c1} = {v − 1; 1}. Clearly,
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this graph has only two strata R0(α) = α and R1(α) = {β : β �= α}. Then, we have only one
kind of two-point resistances which is obtained by using (3.21) as follows:

Rαβ(1) = 2r

v − 1

(
1 − 1

v

)
= 2r

v
for all β ∈ R1(α). (4.1)

4.2. Strongly regular networks

One of the most important distance-regular networks is that with the diameter d = 2, called
the strongly regular network. A network with v vertices is strongly regular with parameters
v, κ, λ, µ whenever it is not complete or edgeless and

(i) each vertex is adjacent to κ vertices;
(ii) for each pair of adjacent vertices there are λ vertices adjacent to both, and

(iii) for each pair of non-adjacent vertices there are µ vertices adjacent to both.

For a strongly regular network, the intersection array is given by

{b0, b1; c1, c2} = {κ, κ − λ − 1; 1, µ}. (4.2)

One can note that if we consider networks with diameter 2 and maximum degree κ and
α ∈ V , then α has at most κ neighbours, and at most κ(κ − 1) vertices lie at a distance 2 from
α. Therefore,

v � 1 + κ + κ2 − κ = κ2 + 1, or κ �
√

v − 1, (4.3)

where in the following by using inequality (4.3) we will obtain upper bounds for two-point
resistances in strongly regular networks. To do so, first we calculate two-point resistances for
these networks.

By using (3.21), (3.30) and (4.2), we obtain

Rαβ(1) = 2r

κ

(
v − 1

v

)
, (4.4)

and

Rαβ(2) = 2r

κ(κ − λ − 1)

(
κ − λ − 2κ − λ

v

)
, (4.5)

respectively. Then, from (4.3) and (4.4), we obtain the following upper bound for Rαβ(1) :

Rαβ(1) � 2r
√

v − 1

v
. (4.6)

Now, we consider the following two well-known strongly regular networks.

(A) Petersen network
A Petersen network [14] is a strongly regular network with parameters (v, κ, λ, η) =
(10, 3, 0, 1) and the intersection array {b0, b1; c1, c2} = {3, 2; 1, 1}. Therefore, by using
(4.4) and (4.5), we obtain

Rαβ(1) = 3r

5
and Rαβ(2) = 4r

5
. (4.7)

From (4.7), it is seen that Rαβ(1) in the Petersen graph saturates the upper bound (4.6).

(B) Normal subgroup scheme

Definition 2.3. The partition P = {P0, P1, . . . , Pd} of a finite group G is called a blueprint
[14] if
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(i) P0 = {e}
(ii) for i = 1, 2, . . . , d if g ∈ Pi then g−1 ∈ Pi

(iii) the set of relations Ri = {(α, β) ∈ G ⊗ G|α−1β ∈ Pi} on G form an association scheme.

The set of real conjugacy classes Pi given in appendix A of [1] is an example of blueprint on
G. Also, one can show that in the regular representation, the class sums P̄i for i = 0, 1, . . . , d

defined as

P̄i =
∑
γ∈Pi

γ ∈ CG, i = 0, 1, . . . , d (4.8)

are the adjacency matrices of a blueprint scheme.

In [1], it has been shown that, if H be a normal subgroup of G, the following blueprint classes,

P0 = {e}, P1 = G − {H }, P2 = H − {e}, (4.9)

define a strongly regular network with parameters (v, κ, λ, η) = (g, g −h, g − 2h, g −h) and
the following intersection array:

{b0, b1; c1, c2} = {g − h, h − 1; 1, g − h}, (4.10)

where g := |G| and h := |H |. It is interesting to note that in a normal subgroup scheme, the
intersection array and other parameters depend only on the cardinalities of the group and its
normal subgroup. From (4.9), it is seen that |R2(α)| = h − 1. Then, by using (4.4) and (4.5),
we obtain

Rαβ(1) = 2r(g − 1)

g(g − h)
, and Rαβ(2) = 2r

(g − h)
. (4.11)

One should note that, the maximum degree κ for the normal subgroup scheme is
κmax = g − 2 (h = 2), which can be appear in networks with even cardinality such as
the dihedral group. Therefore, for the normal subgroup scheme (strongly regular networks
with parameters (g, g − h, g − 2h, g − h)), we have

κ � g − 2, (4.12)

and therefore, by using (4.3), (4.11) and (4.12) (κ = g − h), we obtain upper and lower
bounds for Rαβ(1) and Rαβ(2) as follows:

2r(g − 1)

g(g − 2)
� Rαβ(1) � 2r

√
g − 1

g
,

2r

g − 2
� Rαβ(2) � 2r√

g − 1
. (4.13)

As an example, we consider the dihedral group G = D2m, where its normal subgroup is
H = Zm. Therefore, the blueprint classes are given by

P0 = {e}, P1 = {b, ab, a2b, . . . , am−1b}, P2 = {a, a2, . . . , a(m−1}, (4.14)

which form a strongly regular network with parameters (2m,m, 0,m) and the following
intersection array:

{b0, b1; c1, c2} = {m,m − 1; 1,m}. (4.15)

By using (4.11), we obtain

Rαβ(1) = r(2m − 1)

m2
, and Rαβ(2) = 2r

m
. (4.16)
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4.3. Cycle network Cv

As was defined in subsection 2.1, the cycle network or cycle with v vertices is denoted by Cv

with κ = 2. We consider v = 2m (the case v = 2m + 1 can be considered similarly). Then,
by substituting the intersection array given by (2.26) in (3.21), (3.30) and (3.36) respectively,
we obtain

Rαβ(1) = r

(
2m − 1

2m

)
, Rαβ(2) = 2r

(
m − 1

m

)
and Rαβ(3) = 3r

(
2m − 3

2m

)
.

(4.17)

From (4.17), one can easily deduce that

Rαβ(k) = kr

(
2m − k

2m

)
k = 1, 2, . . . , m. (4.18)

4.4. d-cube

The d-cube, i.e. the hypercube of dimension d, also called the Hamming cube, is a network
with 2d nodes, each of which can be labelled by a d-bit binary string. Two nodes on the
hypercube described by bitstrings �x and �y are connected by an edge if |�x − �y| = 1, where |�x|
is the Hamming weight of �x. In other words, if �x and �y differ by only a single-bit flip, then
the two corresponding nodes on the graph are connected. Thus, each of the 2d nodes on the
d-cube has degree d. For the d-cube, we have d + 1 strata with

κi = d!

i!(d − i)!
, 0 � i � d − 1. (4.19)

The intersection numbers are given by

bi = d − i, 0 � i � d − 1; ci = i, 1 � i � d. (4.20)

Then, by using (3.21), (3.30) and (3.36), we obtain

Rαβ(1) = 2d − 1

d2d−1
r, Rαβ(2) = 2d−1 − 1

(d − 1)2d−2
r, and

Rαβ(3) = r

d(d − 1)(d − 2)

{
2d(d2 − 2d + 2) − 3d(d − 1) − 2

2d−1

}
.

(4.21)

4.5. Johnson network

Let n � 2 and d � n/2. The Johnson network J (n, d) has all d-element subsets of
{1, 2, . . . , n} such that two d-element subsets are adjacent if their intersection has size d − 1.
Two d-element subsets are then at distance i if and only if they have exactly d − i elements in
common. The Johnson network J (n, d) has v = n!

d!(n−d)! vertices, diameter d and the valency
κ = d(n − d). Its intersection array is given by

bi = (d − i)(n − d − i), 0 � i � d − 1; ci = i2, 1 � i � d. (4.22)

Then, by using (3.21), (3.30) and (3.36), we obtain

Rαβ(1) = 2(n! − d!(n − d)!)

d(n − d)n!
r,

Rαβ(2) = 2r

d(d − 1)(n − d)(n − d − 1)

×
{
d(n − d) − (n − 2) +

d!(n − d)!(n − 2 − 2d(n − d))

n!

}
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and

Rαβ(3) = 2r

d(d − 1)(d − 2)(n − d)(n − d − 1)(n − d − 2)

×
{
d2(n − 2d + 1) + (3n − 2d(n − d) − 10)

d(n − d)d!(n − d)!

n!

+ [d2(n − d)2 − d(n − d)(3n − 9) − 4(d − 1)(n − d − 1)

+ 2(n − 2)(n − 4)]

(
1 − d!(n − d)!

n!

) }
. (4.23)

5. Two-point resistances in infinite regular networks

As results (3.8) and (3.19) show, the two-point resistances on a network depend only on
the Stieltjes function Gµ(x) corresponding to the network. Clearly, the Stieltjes function
corresponding to an infinite network possesses a unique representation as an infinite continued
fraction as follows:

Gµ(x) =
∫

R

µ(dy)

x − y
= 1

x − α0 − β2
1

x−α1− β2
2

x−α2− β2
3

x−α3−···

, (5.1)

where the sequence α0, α1, . . . ;β1, β2, . . . never stops. One should note that in the cases for
which the QD parameters αi and βi iterate themselves after some finite steps, one can find a
closed form for the infinite continued fraction (5.1). This situation takes place, for instance,
in the infinite line network which we will consider as an example in the following. But in
most cases, this situation dose not occur and one cannot obtain a closed form for the Stieltjes
function of the network. In these cases, we approximate the infinite networks with the best
finite ones (it is well known from the theory of continued fractions that all infinite (convergent)
continued fraction expansions can be approximated with some finite ones; for more details see
appendix B). That is, in the infinite networks for which the Stieltjes function Gµ(x) dose not
possess a closed form, one can evaluate the best finite number n such that Gµ(x) converges to
Q

(1)
n−1(x)

Qn(x)
. To this end, we compare two-point resistances in the finite networks with those of the

corresponding infinite ones. More clearly, we plot the curve of one of the two-point resistances
such as Rαβ(1) on the corresponding finite network in terms of the size v of the network and
estimate the best approximation for v such that the difference |Rαβ(1) − limv→∞ Rαβ(1) | tends to
zero. One can use this fact in order to approximate the two-point resistances on an infinite-size
resistor network with those of the corresponding finite-size network.

In the following, we give some examples of infinite networks for which two-point
resistances are evaluated exactly or approximately.

5.1. Examples

(1) Infinite line network
Obviously, the infinite line network is the large-size limit (v → ∞) of the cycle network
Cv discussed before. Therefore, the QD parameters of the infinite line network are given by
α1 = α2 = · · · = 0; ω1 = 2, ω1 = ω2 = · · · = 1. Then, by using (5.1), the Stieltjes function
for the infinite line network reads as

Gµ(x) = 1

x − 2
x− 1

x− 1
x−···

= 1

x − 2G′(x)
, (5.2)
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where

G′(x) = 1

x − 1
x− 1

x−···

= 1

x − G′(x)
. (5.3)

From (5.3), G′(x) is easily obtained as

G′(x) = x ± √
x2 − 4

2
. (5.4)

By substituting (5.4) in (5.2), we obtain the Stieltjes function as follows:

Gµ(x) = 1√
x2 − 4

. (5.5)

Then, for A0 we have

A0 = lim
x→2

((x − 2)Gµ(x)) = 0. (5.6)

Therefore, by using (3.21), (3.30) and (3.36), we obtain

Rαβ(1) = r, Rαβ(2) = 2r, Rαβ(3) = 3r. (5.7)

In fact, it can be easily shown that

Rαβ(k) = kr, k = 1, 2, . . . , (5.8)

where this result could be obtained from (4.18), for large m.

(2) d-cube in the limit d → ∞
By using (2.22) and (4.20), one can obtain QD parameters of the d-cube as follows:

αi = 0, ωi = i(d − i + 1); i = 0, 1, 2, . . . , (5.9)

where we have used κ = κ1 = d. Then by using (2.39), the Stieltjes function reads as

Gµ(x) = 1

x − d

x− 2(d−1)

x− 3(d−2)
x−···

, (5.10)

which is not a closed form. From (4.21), one can see that at the limit of the large dimension
d, the two-point resistances Rαβ(i) , i = 1, 2, 3, tend to zero. Therefore, we find the best
approximation for d such that Rαβ(i) ∼ 0 . By plotting one of the Rαβ(i) , say Rαβ(1) given
by (4.21), in terms of d one can see that Rαβ(1) tend to zero for d larger than ∼200. Therefore,
the finite d cube with d larger than ∼ 200 is a good approximation for the infinite hypercube
resistor network.

(3) Johnson network in the limit n → ∞
By using (2.22) and (4.20), one can obtain QD parameters of the Johnson network J (n, d) as
follows:

αi = i(n − 2i), ωi = i2(d − i + 1)(n − d − i + 1); i = 0, 1, 2, . . . . (5.11)

Then by using (2.39), the Stieltjes function reads as

Gµ(x) = 1

x − d(n−d)

x−(n−2)− 4(d−1)(n−d−1)

x−2(n−4)− 9(d−2)(n−d−2)
x−···

. (5.12)

Clearly, Gµ(x) is not a closed form for a given d, where n → ∞ and so we should approximate
it with a suitable finite one. To do so, one should note that for a given d, result (4.23) shows
that, at the limit of the large dimension n, the two-point resistances Rαβ(i) , i = 1, 2, 3, tend to
zero. Since Rαβ(1) tend to zero for n larger than ∼120. Therefore, the finite Johnson network
J (n, d) with n larger than ∼120 is a good approximation for the infinite Johnson resistor
network.
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6. Two-point resistances in more general networks

Although we discussed through the paper only the case of distance-regular networks, the
method can also be used for any arbitrary regular network. For calculating two-point
resistances, we need only to know the Stieltjes function Gµ(x). For two arbitrary nodes
α and β of the network, we choose one of the nodes, say α, as a reference vertex.
Then, the Stieltjes function Gµ(x) can be calculated by using the recursion relations (2.38)
and (2.40), where, as has been shown in [26], the coefficients αi and βi , for i = 1, . . . , d in the
recursion relations are obtained by applying the Lanczos algorithm to the adjacency matrix of
the network and the reference vertex |α〉. In fact, the adjacency matrix of the network takes
a tridiagonal form in the orthonormal basis {|φi〉, i = 0, 1, . . . , d} produced by the Lanczos
algorithm, and so we obtain again three-term recursion relations as (2.38). But, in general, the
basis produced by the Lanczos algorithm does not define a stratification basis, in the sense that,
a vertex ket |β〉 of the network may appear in more than one of the base vectors |φi〉. In these
cases, if d is equal to v (the number of vertices of the network), one can write each vertex ket
|β〉 uniquely as a superposition of the base vectors |φi〉 and calculate two-point resistance Rαβ

by calculating the entries 〈φi |L−1|α〉 for all i = 0, 1, . . . , d as illustrated through the paper. In
the most cases, d is less than v. In these cases, we need to obtain some additional orthonormal
base vectors {|ψi〉, i = 1, . . . , v−d−1} such that the new bases are orthogonal to the subspace
spanned by {|φi〉, i = 0, 1, . . . , d}. One can obtain some such additional base vectors, by
choosing a normalized vector orthogonal to the subspace spanned by {|φi〉, i = 0, 1, . . . , d}
as a new reference state and applying the Lanczos algorithm to the adjacency matrix of the
network and the new reference state. If the number of the new orthonormal base vectors still be
less than v − d − 1, we choose another normalized reference state orthogonal to the subspace
spanned by all previous orthonormal bases and apply the Lanczos algorithm to the adjacency
matrix and the new chosen reference state. By repeating this process until v orthonormal bases
are obtained, one can solve a system of v equations with v unknowns to write each vertex ket
|β〉 as a superposition of the v orthonormal bases.

7. Conclusion

The resistance between two arbitrary nodes in a distance-regular resistor network was obtained
in terms of the Stieltjes transform of the spectral measure or Stieltjes function associated with
the network and its derivatives. It was shown that the resistances between a node α and all nodes
β belonging to the same stratum with respect to the α are the same. Also, explicit analytical
formulae for two-point resistances Rαβ for β belonging to the first, second and third stratum
with respect to the α were driven in terms of the size of the network and the corresponding
intersection numbers. In particular, the two-point resistances in a strongly regular network
with parameters (v, κ, λ, µ) were given in terms of these parameters. Moreover, the lower
and upper bounds for two-point resistances in strongly regular networks were discussed. It
was discussed that the introduced method can be used not only for distance-regular networks,
but also for any arbitrary regular network by employing the Lanczos algorithm iteratively.

Appendix A

In this appendix, we give the two-point resistances Rαβ(i) , i = 1, 2, 3, for some important
distance-regular networks with v � 70.
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The network v Intersection array Reference Rαβ(1) Rαβ(2) Rαβ(3)

Icosahedron 12 {5, 2, 1; 1, 2, 5} [32] 11r
30

7r
15

r
2

L(Petersen) 15 {4, 2, 1; 1, 1, 4} [32] 7r
15

19r
30

2r
3

Pappus, Three-cover K3,3 18 {3, 2, 2, 1; 1, 1, 2, 3} [32] 17r
27

8r
9

26r
27

Desargues 20 {3, 2, 2, 1, 1; 1, 1, 2, 2, 3} [32] 19r
30

8r
9

59r
60

Dodecahedron 20 {3, 2, 1, 1, 1; 1, 1, 1, 2, 3} [32] 19r
30

9r
10

16r
15

GH(2, 1) 21 {4, 2, 2; 1, 1, 2} [32] 10r
21

2r
3

5r
7

Klein 24 {7, 4, 1; 1, 2, 7} [32] 23r
84

9r
28

r
3

GQ(2, 4)\spread 27 {8, 6, 1; 1, 3, 8} [32] 13r
54

29r
108

5r
18

H(3, 3) 27 {6, 4, 2; 1, 2, 3} [32] 26r
81

31r
81

11r
27

Coxeter 28 {3, 2, 2, 1; 1, 1, 1, 2} [32] 9r
14

13r
14

73r
84

Taylor(P (13)) 28 {13, 6, 1; 1, 6, 13} [33] 27r
182

44r
273

91r
546

Tutte’s eight-cage 30 {3, 2, 2, 2; 1, 1, 1, 3} [32] 29r
45

14r
15

139r
90

Taylor(GQ(2, 2)) 32 {15, 8, 1; 1, 8, 15} [33] 31r
240

11r
80

17r
120

Taylor(T (6)) 32 {15, 6, 1; 1, 6, 15} [33] 31r
240

101r
720

13r
90

IG(AG(2, 4)\pc) 32 {4, 3, 3, 1; 1, 1, 3, 4} [34] 31r
64

5r
8

125r
192

Wells 32 {5, 4, 1, 1; 1, 1, 4, 5} [34] 31r
80

15r
32

39r
80

Hadamard graph 32 {8, 7, 4, 1; 1, 4, 7, 8} [35] 31r
128

15r
56

249r
896

Odd(4) 35 {4, 2, 1; 1, 1, 4} [36, 37] 17r
35

22r
35

242r
315

Sylvester 36 {5, 4, 4; 1, 1, 4} [36] 7r
18

17r
36

181r
240

Taylor(P (17)) 36 {17, 8, 1; 1, 8, 17} [33] 35r
306

149r
1224

279r
272

Three-cover K6,6 36 {6, 5, 4, 1; 1, 2, 5, 6} [33] 35r
108

17r
45

211r
540

SRG\spread 40 {9, 6, 1; 1, 2, 9} [38] 13r
60

11r
45

r
4

Ho − Si2(x) 42 {16, 5, 1; 1, 1, 6} [36] 41r
126

8r
21

34r
105

Mathon (Cycl(13, 3)) 42 {13, 8, 1; 1, 4, 13} [39] 41r
273

89r
546

91r
13

GO(2, 1) 45 {4, 2, 2, 2; 1, 1, 1, 2} [34] 22r
45

32r
45

4r
5

Three-cover GQ(2, 2) 45 {6, 4, 2, 1; 1, 1, 4, 6} [34] 44r
135

107r
270

221r
540

Hadamard graph 48 {12, 11, 6, 1; 1, 6, 11, 12} [33] 47r
288

23r
132

565r
3168

IG(AG(2, 5)\pc) 50 {5, 4, 4, 1; 1, 1, 4, 5} [34] 49r
125

12r
25

123r
250

Mathon (Cycl(16, 3)) 51 {16, 10, 1; 1, 5, 16} [39] 25r
204

89r
680

68r
510

GH(3, 1) 52 {6, 3, 3; 1, 1, 2} [40] 51r
156

11r
26

23r
52

Taylor(SRG(25, 12)) 52 {25, 12, 1; 1, 12, 25} [33] 51r
650

319r
3900

13r
156

Three-cover K9,9 54 {9, 8, 6, 1; 1, 3, 8, 9} [33] 53r
243

13r
54

239r
972

Gosset,Tayl(Schläfli) 56 {27, 10, 1; 1, 10, 27} [33] 55r
756

289r
3780

49r
630

Taylor(Co-Schläfli) 56 {27, 16, 1; 1, 16, 27} [33] 55r
756

227r
3024

11r
144

Perkel 57 {6, 5, 2; 1, 1, 3} [36, 41] 56r
171

22r
57

68r
171

Mathon(Cycl(11, 5)) 60 {11, 8, 1; 1, 2, 11} [39] 59r
330

32r
165

r
5

Mathon(Cycl(19, 3)) 60 {19, 12, 1; 1, 6, 19} [39] 59r
570

187r
1710

3151r
570

Taylor(SRG(29, 14)) 60 {29, 14, 1; 1, 14, 29} [33] 59r
870

214r
3045

29r
406

GH(2, 2) 63 {6, 4, 4; 1, 1, 3} [40] 62r
189

76r
189

271r
504
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The network v Intersection array Reference Rαβ(1) Rαβ(2) Rαβ(3)

H(3, 4), Doob 64 {9, 6, 3; 1, 2, 3} [33] 7r
32

r
4

25r
96

Locally Petersen 65 {10, 6, 4; 1, 2, 5} 64r
325

73r
325

49r
156

Doro 68 {12, 10, 3; 1, 3, 8} 67r
408

145r
816

253r
1020

Doubled odd(4) 70 {4, 3, 3, 2, 2, 1, 1; 1, 1, 2, 2, 3, 3, 4} [33] 69r
140

68r
105

869r
1260

J (8, 4) 70 {16, 9, 4, 1; 1, 4, 9, 16} [33] 69r
560

337r
2520

691r
5040

Appendix B

In this appendix, we recall some facts about the approximation of an infinite continued fraction
as in (5.1) with a finite one. To do so, we use the following notation:

1

(x − α0)−
β2

1

(x − α1)−
β2

2

(x − α2)−
β2

3

(x − α3)− · · ·
for the infinite continued fraction in (5.1). Then, we consider the convergents Cn as

Cn = 1

(x − α0)−
β2

1

(x − α1)− · · · β2
n−1

(x − αn−1)
= Q

(1)
n−1(x)

Qn(x)
(B.1)

for n � 1, where Qn(x) and Q
(1)
n−1(x) are polynomials with recursion relations (2.38)

and (2.40), respectively. We say that an infinite continued fraction 1
(x−α0)−

β2
1

(x−α1)−
β2

2
(x−α2)−

β2
3

(x−α3)− · · · converges if (Cn, is determinate and finite for all sufficiently large
n and) limn→∞ Cn exists. Of course, the value of the continued fraction is defined to be this
limit, i.e.,

1

(x − α0)−
β2

1

(x − α1)−
β2

2

(x − α2)−
β2

3

(x − α3)− · · · ≡ lim
n→∞ Cn. (B.2)

One should note that similar to the convergent infinite series, the most infinite continued
fractions (even if they converge) have not a closed form. But one can approximate such
infinite continued fractions with some suitable finite ones. For example, every best rational

approximation of Gµ(x) is a convergent
Q

(1)
n−1(x)

Qn(x)
for some n (see theorem 15, p 22 and

theorem 16, p 24 of [13]).
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